论文标题

部分可观测时空混沌系统的无模型预测

Finite temperature ferromagnetic transition in coherently coupled Bose gases

论文作者

Roy, Arko, Ota, Miki, Dalfovo, Franco, Recati, Alessio

论文摘要

已知稀释的超电原子气体的二维相干耦合的玻色混合物,只要种间相互作用强度足够大,就可以在零温度下在零温度下发生顺磁性量子量子相变。在这里,我们通过使用随机(预测的)Gross-Pitaevskii形式主义进行数值模拟来研究有限温度下过渡的命运,该模拟包括热场和均值场效应。通过提取平均磁化,磁波和特性松弛频率(或临界减速),我们确定过渡的有限温度关键线。我们发现,临界点随温度线性移动,此外,用于探测过渡的三个量显示了温度幂律缩放。发现临界放慢量的缩放与热临界指数一致,并且在零温度处的自旋激发隙的平方非常近似。

A paramagnetic-ferromagnetic quantum phase transition is known to occur at zero temperature in a two-dimensional coherently-coupled Bose mixture of dilute ultracold atomic gases provided the interspecies interaction strength is large enough. Here we study the fate of such a transition at finite temperature by performing numerical simulations with the stochastic (projected) Gross-Pitaevskii formalism, which includes both thermal and beyond mean-field effects. By extracting the average magnetization, the magnetic fluctuations and characteristic relaxation frequency (or, critical slowing down), we identify a finite temperature critical line for the transition. We find that the critical point shifts linearly with temperature and, in addition, the three quantities used to probe the transition exhibit a temperature power-law scaling. The scaling of the critical slowing down is found to be consistent with thermal critical exponents and is very well approximated by the square of the spin excitation gap at the zero-temperature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源