论文标题

从哈勃到快照参数:高斯过程重建

From Hubble to Snap Parameters: A Gaussian Process Reconstruction

论文作者

Jesus, J. F., Benndorf, D., Pereira, S. H., Escobal, A. A.

论文摘要

通过使用最近的$ h(z)$和sne ia数据,我们使用独立于模型的,非参数方法(即高斯流程)重建运动学参数的演变$ h(z)$,$ q(z)$,jerk和snap。在当前的整个分析中,我们允许基于Planck 18 [1]的约束来先验空间曲率。对于SNE IA,我们修改了Python软件包(GAPP)[2],以获得函数的第四个导数的重建,从而允许我们从共同的距离中获取快照。此外,使用一种重要性采样方法,我们结合了$ h(z)$和sne ia重建,以找到运动参数的关节约束。我们发现参数的当前值:$ h_0 = 67.2 \ pm 6.2 $ km/s/mpc,$ q_0 = -0.60^{+0.21} _ { - 0.18} $,$ J_0 = 0.90 = 0.90 = 0.90^{+0.75} $ s_0 = -0.57^{+0.52} _ { - 0.31} $ at 1 $σ$ c.l.我们发现这些重建与Flat $λ$ CDM型号的预测兼容,至少在2 $σ$置信区间。

By using recent $H(z)$ and SNe Ia data, we reconstruct the evolution of kinematic parameters $H(z)$, $q(z)$, jerk and snap, using a model-independent, non-parametric method, namely, the Gaussian Processes. Throughout the present analysis, we have allowed for a spatial curvature prior, based on Planck 18 [1] constraints. In the case of SNe Ia, we modify a python package (GaPP) [2] in order to obtain the reconstruction of the fourth derivative of a function, thereby allowing us to obtain the snap from comoving distances. Furthermore, using a method of importance sampling, we combine $H(z)$ and SNe Ia reconstructions in order to find joint constraints for the kinematic parameters. We find for the current values of the parameters: $H_0 =67.2 \pm 6.2$ km/s/Mpc, $q_0 = -0.60^{+0.21}_{-0.18}$, $j_0=0.90^{+0.75}_{-0.65}$, $s_0=-0.57^{+0.52}_{-0.31}$ at 1$σ$ c.l. We find that these reconstructions are compatible with the predictions from flat $Λ$CDM model, at least for 2$σ$ confidence intervals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源