论文标题

推动边界:3D点云语义分割的边界感知特征传播

Push-the-Boundary: Boundary-aware Feature Propagation for Semantic Segmentation of 3D Point Clouds

论文作者

Du, Shenglan, Ibrahimli, Nail, Stoter, Jantien, Kooij, Julian, Nan, Liangliang

论文摘要

前馈完全卷积神经网络目前在3D点云的语义分割中占主导地位。尽管他们取得了巨大的成功,但他们仍遭受了低级层的本地信息的损失,对准确的场景细分和精确的对象边界描述构成了重大挑战。先前的工作要么通过后处理或共同学习对象边界来解决此问题,以隐式改进网络的功能编码。这些方法通常需要其他难以集成到原始体系结构中的模块。 为了改善物体边界附近的分割,我们提出了一种边界感知特征传播机制。这种机制是通过利用多任务学习框架来实现的,该框架旨在明确指导其原始位置的边界。使用一个共享的编码器,我们的网络输出(i)边界定位,(ii)指向对象内部指向对象内部的方向和(iii)语义分割,在三个平行流中。预测的边界和方向被融合以传播学习的特征以完善细分。我们针对各种基线方法进行了S3DIS和SensaturBan数据集的广泛实验,这表明我们提出的方法通过减少边界误差可实现一致的改进。我们的代码可从https://github.com/shenglandu/pushboundary获得。

Feedforward fully convolutional neural networks currently dominate in semantic segmentation of 3D point clouds. Despite their great success, they suffer from the loss of local information at low-level layers, posing significant challenges to accurate scene segmentation and precise object boundary delineation. Prior works either address this issue by post-processing or jointly learn object boundaries to implicitly improve feature encoding of the networks. These approaches often require additional modules which are difficult to integrate into the original architecture. To improve the segmentation near object boundaries, we propose a boundary-aware feature propagation mechanism. This mechanism is achieved by exploiting a multi-task learning framework that aims to explicitly guide the boundaries to their original locations. With one shared encoder, our network outputs (i) boundary localization, (ii) prediction of directions pointing to the object's interior, and (iii) semantic segmentation, in three parallel streams. The predicted boundaries and directions are fused to propagate the learned features to refine the segmentation. We conduct extensive experiments on the S3DIS and SensatUrban datasets against various baseline methods, demonstrating that our proposed approach yields consistent improvements by reducing boundary errors. Our code is available at https://github.com/shenglandu/PushBoundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源