论文标题
数值模拟器的二级全局灵敏度分析,并应用于钠冷水快速反应器中的事故情况
Second-level global sensitivity analysis of numerical simulators with application to an accident scenario in a sodium-cooled fast reactor
论文作者
论文摘要
数值模拟器被广泛用于建模物理现象和全球灵敏度分析(GSA)旨在研究输入不确定性对模拟器输出的全球影响。为了执行GSA,通常使用基于输入/输出依赖度量的统计工具。我们在这里专注于希尔伯特·史克米特独立标准(HSIC)。有时,对输入不确定性进行建模的概率分布本身可能不确定,并且量化其对GSA结果的影响很重要。我们在这里称其为第二级全球灵敏度分析(GSA2)。但是,GSA2使用蒙特卡洛双环进行时,需要大量的模型评估,这与CPU Time昂贵的模拟器相处是棘手的。为了应对这一限制,我们提出了一种基于蒙特卡洛单循环的新统计方法,其计算预算有限。首先,我们从选择的输入概率分布中构建了一个独特的输入和模拟器输出样本。从该样本中,我们通过使用加权HSIC测量估计器对输入的各种假定概率分布执行GSA。证明了这些加权估计量的统计特性。随后,我们定义了构成GSA2指数的输入和GSA结果的分布之间的2 nd级基于HSICB的度量。在一个分析示例中说明了我们的GSA2方法的效率,从而比较了几种技术选择。最后,提供了模拟核反应堆严重意外情况的测试案例的应用。
Numerical simulators are widely used to model physical phenomena and global sensitivity analysis (GSA) aims at studying the global impact of the input uncertainties on the simulator output. To perform GSA, statistical tools based on inputs/output dependence measures are commonly used. We focus here on the Hilbert-Schmidt independence criterion (HSIC). Sometimes, the probability distributions modeling the uncertainty of inputs may be themselves uncertain and it is important to quantify their impact on GSA results. We call it here the second-level global sensitivity analysis (GSA2). However, GSA2, when performed with a Monte Carlo double-loop, requires a large number of model evaluations, which is intractable with CPU time expensive simulators. To cope with this limitation, we propose a new statistical methodology based on a Monte Carlo single-loop with a limited calculation budget. First, we build a unique sample of inputs and simulator outputs, from a well-chosen probability distribution of inputs. From this sample, we perform GSA for various assumed probability distributions of inputs by using weighted HSIC measures estimators. Statistical properties of these weighted estimators are demonstrated. Subsequently, we define 2 nd-level HSICbased measures between the distributions of inputs and GSA results, which constitute GSA2 indices. The efficiency of our GSA2 methodology is illustrated on an analytical example, thereby comparing several technical options. Finally, an application to a test case simulating a severe accidental scenario on nuclear reactor is provided.