论文标题
对齐熵正则化
Alignment Entropy Regularization
论文作者
论文摘要
自动语音识别(ASR)中现有的训练标准允许该模型自由探索功能和标签序列之间的一次比对。在本文中,我们使用熵来测量模型的不确定性,即它如何选择在允许对齐的集合上分配概率质量。此外,我们评估了熵正则化在鼓励模型仅在较小的允许比对子集上分布概率质量的效果。实验表明,熵正则化可以实现一种更简单的解码方法,而无需牺牲单词错误率,并提供了更好的时间对齐质量。
Existing training criteria in automatic speech recognition(ASR) permit the model to freely explore more than one time alignments between the feature and label sequences. In this paper, we use entropy to measure a model's uncertainty, i.e. how it chooses to distribute the probability mass over the set of allowed alignments. Furthermore, we evaluate the effect of entropy regularization in encouraging the model to distribute the probability mass only on a smaller subset of allowed alignments. Experiments show that entropy regularization enables a much simpler decoding method without sacrificing word error rate, and provides better time alignment quality.