论文标题
一种评估两步结晶的反应坐标的变分方法
A Variational Approach to Assess Reaction Coordinates for Two-Step Crystallisation
论文作者
论文摘要
基于分子和粒子的模拟提供了以微观细节为基础成核理论的有效性测试的工具。在这项努力中,确定相位分离的成核机制和速率需要适当定义的反应坐标,以描述父级外相的转换,为此,模拟器可以使用多种选择。在本文中,我们描述了变异方法在马尔可夫过程中的应用(VAMP),以量化反应坐标对研究过饱和胶体悬浮液的结晶的适用性。我们的分析表明,集体变量(CVS)与凝结相中的粒子数量相关,系统势能和近似配置熵通常以定量描述结晶过程的最合适的顺序参数。我们应用时置的独立组件分析以减少从这些CVS构建的高维反应坐标以构建马尔可夫状态模型(MSMS),这表明两个屏障将过饱和流体相位与模拟环境中的晶体分开。 MSM提供了晶体成核速率的一致估计,无论采用的顺序参数空间的维度如何;但是,只有在更高维度的MSM的光谱聚类中,两步机制才始终明显。由于该方法是通用且易于转移的,因此我们采用的变异方法可以提供一个有用的框架来研究晶体成核的控制。
Molecule- and particle-based simulations provide the tools to test, in microscopic detail, the validity of classical nucleation theory. In this endeavour, determining nucleation mechanisms and rates for phase separation requires an appropriately defined reaction coordinate to describe the transformation of an out-of-equilibrium parent phase, for which myriad options are available to the simulator. In this article, we describe the application of the variational approach to Markov processes (VAMP) to quantify the suitability of reaction coordinates to study crystallisation from supersaturated colloid suspensions. Our analysis indicates that collective variables (CVs) that correlate with the number of particles in the condensed phase, the system potential energy and approximate configurational entropy often feature as the most appropriate order parameters to quantitatively describe the crystallisation process. We apply time-lagged independent component analysis to reduce high-dimensional reaction coordinates constructed from these CVs to build Markov State Models (MSMs), which indicate that two barriers separate a supersaturated fluid phase from crystals in the simulated environment. The MSMs provide consistent estimates for crystal nucleation rates, regardless of the dimensionality of the order parameter space adopted; however, the two-step mechanism is only consistently evident from spectral clustering of the MSMs in higher dimensions. As the method is general and easily transferable, the variational approach we adopt could provide a useful framework to study controls for crystal nucleation.