论文标题

贝叶斯大脑组成叙述的数学基础

Mathematical Foundations for a Compositional Account of the Bayesian Brain

论文作者

Smithe, Toby St Clere

论文摘要

该论文报告了朝着主动推理和贝叶斯大脑组成的一些第一步。具体而言,我们使用当代应用类别理论的工具来提供功能语义以进行大致推断。为此,我们在“句法”方面定义了贝叶斯镜头的新概念,并表明贝叶斯更新是根据构图镜头图案组成的。我们使用贝叶斯镜头,受构图游戏理论的启发,我们定义了统计游戏的纤维化,并将统计推断的各种问题分类为相应的部分:相对熵的链条规则被形式化为严格的部分,而最大似然估计和自由能和自由能提供了宽松的部分。在此过程中,我们介绍了一个新的“拷贝组合”概念。 在语义方面,我们介绍了一般开放动力学系统的新形式化(特别是:确定性,随机性和随机性;以及离散的和连续的时间),作为多项式函数的某些煤层,我们将其显示为单型opIndexed类别(或者,或者,这些类别(或替代地,将其用于代数,用于多型函数的多层型函数)。我们使用这些OpIndexed类别来定义CILIA的单体生物学:控制镜片的动力系统,并为我们的功能语义提供目标。因此,我们构建了能够解释自由能原理下预测编码神经回路的双向组成结构的函数,从而给出了在皮层中观察到的双向性的正式数学基础。在此过程中,我们解释了如何使用代数来组成速率编码的神经回路,以进行线性电路图的多材​​,随后表明这是由透镜和多项式函数归为的。

This dissertation reports some first steps towards a compositional account of active inference and the Bayesian brain. Specifically, we use the tools of contemporary applied category theory to supply functorial semantics for approximate inference. To do so, we define on the `syntactic' side the new notion of Bayesian lens and show that Bayesian updating composes according to the compositional lens pattern. Using Bayesian lenses, and inspired by compositional game theory, we define fibrations of statistical games and classify various problems of statistical inference as corresponding sections: the chain rule of the relative entropy is formalized as a strict section, while maximum likelihood estimation and the free energy give lax sections. In the process, we introduce a new notion of `copy-composition'. On the `semantic' side, we present a new formalization of general open dynamical systems (particularly: deterministic, stochastic, and random; and discrete- and continuous-time) as certain coalgebras of polynomial functors, which we show collect into monoidal opindexed categories (or, alternatively, into algebras for multicategories of generalized polynomial functors). We use these opindexed categories to define monoidal bicategories of cilia: dynamical systems which control lenses, and which supply the target for our functorial semantics. Accordingly, we construct functors which explain the bidirectional compositional structure of predictive coding neural circuits under the free energy principle, thereby giving a formal mathematical underpinning to the bidirectionality observed in the cortex. Along the way, we explain how to compose rate-coded neural circuits using an algebra for a multicategory of linear circuit diagrams, showing subsequently that this is subsumed by lenses and polynomial functors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源