论文标题

等式的子空间,完整图的封面和复杂的会议矩阵

Equi-isoclinic subspaces, covers of the complete graph, and complex conference matrices

论文作者

Fickus, Matthew, Iverson, Joseph W., Jasper, John, Mixon, Dustin G.

论文摘要

1992年,Godsil and Hensel对完整图的距离定型对抗覆盖物进行了突破性的研究,其中除其他外,它引入了与Equi-Isoclinic子空间的重要联系。这种联系似乎被忽略了,因为文献中从未详细介绍过许多直接的后果。为了纠正这种情况,我们首先描述了Godsil和Hensel的机器如何使用表示理论来构建等式的紧密融合框架。将这台计算机应用于Mathon的构造中,以$ \ MATHBB {r}^{q+1} $的任何均匀电源$ q> 2 $产生$ q+1 $ plaes。尽管是30岁的Godsil-Hensel结果的应用,但文献中从未阐明过许多这些参数。遵循ET-Taoui的想法,然后我们研究了与复杂的对称会议矩阵的富有成果的相互作用。

In 1992, Godsil and Hensel published a ground-breaking study of distance-regular antipodal covers of the complete graph that, among other things, introduced an important connection with equi-isoclinic subspaces. This connection seems to have been overlooked, as many of its immediate consequences have never been detailed in the literature. To correct this situation, we first describe how Godsil and Hensel's machine uses representation theory to construct equi-isoclinic tight fusion frames. Applying this machine to Mathon's construction produces $q+1$ planes in $\mathbb{R}^{q+1}$ for any even prime power $q>2$. Despite being an application of the 30-year-old Godsil-Hensel result, infinitely many of these parameters have never been enunciated in the literature. Following ideas from Et-Taoui, we then investigate a fruitful interplay with complex symmetric conference matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源