论文标题

具有自然主义驾驶数据的电子驾驶室崩溃的风险评估和缓解崩溃

Risk assessment and mitigation of e-scooter crashes with naturalistic driving data

论文作者

Prabu, Avinash, Zhang, Zhengming, Tian, Renran, Chien, Stanley, Li, Lingxi, Chen, Yaobin, Sherony, Rini

论文摘要

最近,电子驾驶员涉及的撞车事故已大大增加,但几乎没有有关跨道路电动车手行为的信息。大多数现有的电子驾驶员崩溃研究是基于回顾性描述性媒体报告,急诊室患者记录和崩溃报告。本文介绍了一项自然主义的驾驶研究,重点是电子驾驶室和车辆遇到。目的是定量测量不同遇到的电子驾驶员骑手的行为,以帮助促进碰撞方案建模,基线行为建模以及潜在的降低车辆降低算法的未来开发。数据分别是使用仪表车辆和E型驾驶员可穿戴系统收集的。开发了三步数据分析过程。首先,半自动数据标记在相似的环境中提取E型骑手图像和非驾驶员的人类图像,以训练电子骑手骑手分类器。然后,多步场景重建管道在所有相遇中都会生成车辆和电子式轨迹。最后一步是建模电子驾驶员的骑手行为和电子驾驶室车辆遇到场景。总共分析了500辆与电子驾驶室相互作用的车辆。本文还讨论了与此相关的变量。

Recently, e-scooter-involved crashes have increased significantly but little information is available about the behaviors of on-road e-scooter riders. Most existing e-scooter crash research was based on retrospectively descriptive media reports, emergency room patient records, and crash reports. This paper presents a naturalistic driving study with a focus on e-scooter and vehicle encounters. The goal is to quantitatively measure the behaviors of e-scooter riders in different encounters to help facilitate crash scenario modeling, baseline behavior modeling, and the potential future development of in-vehicle mitigation algorithms. The data was collected using an instrumented vehicle and an e-scooter rider wearable system, respectively. A three-step data analysis process is developed. First, semi-automatic data labeling extracts e-scooter rider images and non-rider human images in similar environments to train an e-scooter-rider classifier. Then, a multi-step scene reconstruction pipeline generates vehicle and e-scooter trajectories in all encounters. The final step is to model e-scooter rider behaviors and e-scooter-vehicle encounter scenarios. A total of 500 vehicle to e-scooter interactions are analyzed. The variables pertaining to the same are also discussed in this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源