论文标题

真实或假文字?:调查人类写入和机器生成文本之间界限的能力

Real or Fake Text?: Investigating Human Ability to Detect Boundaries Between Human-Written and Machine-Generated Text

论文作者

Dugan, Liam, Ippolito, Daphne, Kirubarajan, Arun, Shi, Sherry, Callison-Burch, Chris

论文摘要

正如大语模型生成的文本增殖所产生的那样,了解人类如何与这种文本互动,以及他们是否能够检测到他们正在阅读的文本并不是人类作家源于人类作家变得至关重要的。关于人类对生成文本的检测的先前工作重点是整个段落是人编写或机器生成的情况。在本文中,我们研究了一个更现实的环境,其中文本以人为写的开始,并过渡到由最新的神经语言模型产生的。我们表明,尽管注释者经常在这项任务上挣扎,但注释器技能有很大的差异,并且如果有适当的激励措施,注释者可以随着时间的推移在此任务中改进。此外,我们进行了详细的比较研究,并分析了各种变量(模型大小,解码策略,微调,及时流派等)如何影响人类的检测性能。最后,我们从参与者那里收集错误注释,并使用他们来表明某些文本类型会影响模型以造成不同类型的错误,并且某些句子级特征与注释者的选择高度相关。我们发布了ROFT数据集:超过21,000个人类注释以及错误分类的集合,以鼓励未来的人类检测和评估生成的文本的工作。

As text generated by large language models proliferates, it becomes vital to understand how humans engage with such text, and whether or not they are able to detect when the text they are reading did not originate with a human writer. Prior work on human detection of generated text focuses on the case where an entire passage is either human-written or machine-generated. In this paper, we study a more realistic setting where text begins as human-written and transitions to being generated by state-of-the-art neural language models. We show that, while annotators often struggle at this task, there is substantial variance in annotator skill and that given proper incentives, annotators can improve at this task over time. Furthermore, we conduct a detailed comparison study and analyze how a variety of variables (model size, decoding strategy, fine-tuning, prompt genre, etc.) affect human detection performance. Finally, we collect error annotations from our participants and use them to show that certain textual genres influence models to make different types of errors and that certain sentence-level features correlate highly with annotator selection. We release the RoFT dataset: a collection of over 21,000 human annotations paired with error classifications to encourage future work in human detection and evaluation of generated text.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源