论文标题
RME-GAN:基于条件生成对抗网络的无线电图估算的学习框架
RME-GAN: A Learning Framework for Radio Map Estimation based on Conditional Generative Adversarial Network
论文作者
论文摘要
室外无线电图估计是现代物联网(IoT)和蜂窝系统中网络计划和资源管理的重要工具。无线电图描述了空间信号强度分布并提供网络覆盖信息。一个实际的目标是通过稀疏无线电强度测量估算精细分辨率无线电图。但是,在许多室外环境中,不均匀定位的测量和访问障碍可能使得难以准确的无线电图估计(RME)和频谱计划。在这项工作中,我们通过整合无线电传播模型并设计有条件的生成对抗网络(CGAN)来开发一个两相学习框架,以用于无线电图估计。我们首先探索全局信息以提取无线电传播模式。然后,我们专注于局部功能,以估计阴影对无线电图的影响,以训练和优化CGAN。我们的实验结果证明了基于室外场景中稀疏观测值的生成模型的无线电图估计框架对无线电图估计的功效。
Outdoor radio map estimation is an important tool for network planning and resource management in modern Internet of Things (IoT) and cellular systems. Radio map describes spatial signal strength distribution and provides network coverage information. A practical goal is to estimate fine-resolution radio maps from sparse radio strength measurements. However, non-uniformly positioned measurements and access obstacles can make it difficult for accurate radio map estimation (RME) and spectrum planning in many outdoor environments. In this work, we develop a two-phase learning framework for radio map estimation by integrating radio propagation model and designing a conditional generative adversarial network (cGAN). We first explore global information to extract the radio propagation patterns. We then focus on the local features to estimate the effect of shadowing on radio maps in order to train and optimize the cGAN. Our experimental results demonstrate the efficacy of the proposed framework for radio map estimation based on generative models from sparse observations in outdoor scenarios.