论文标题

对退化抛物线 - 纤维pde的有限差异方案的收敛速度和征费噪声

On rate of convergence of finite difference scheme for degenerate parabolic-hyperbolic PDE with Levy noise

论文作者

Behera, Soumya Ranjan, Majee, Ananta K.

论文摘要

在本文中,我们考虑了一个半离散的有限差差方案,该方案是由Lévy噪声在一个空间维度中驱动的退化抛物线式碳酸盐PDE。 Using bounded variation estimations and a variant of classical Kružkov's doubling of variable approach, we prove that expected value of the $L^1$-difference between the unique entropy solution and approximate solution converges at a rate of $(Δx)^\frac{1}{7}$, where $Δx$ is the spatial mesh size.

In this article, we consider a semi discrete finite difference scheme for a degenerate parabolic-hyperbolic PDE driven by Lévy noise in one space dimension. Using bounded variation estimations and a variant of classical Kružkov's doubling of variable approach, we prove that expected value of the $L^1$-difference between the unique entropy solution and approximate solution converges at a rate of $(Δx)^\frac{1}{7}$, where $Δx$ is the spatial mesh size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源