论文标题

一般相对论中的球形对称虫洞,带有Kalb-Ramond背景的重力

Spherically symmetric wormholes in General Relativity and modified gravity with a Kalb-Ramond background

论文作者

Goswami, Parangam, Baruah, Anshuman, Deshamukhya, Atri

论文摘要

在几种改良/扩展的重力范式中,可以追溯到cartan的反对称连接的概念。最近,字符串理论的发展表明,存在一个称为Kalb-Ramond场的等级2自相互作用张量场,其结果相似,其磁场强度可以支持类似虫洞的溶液。但是,缺乏对这种解决方案感兴趣的物理特性的详细分析。在这项研究中,我们全面探究了由Kalb-Ramond田地强度在一般相对论(GR)和$ f(r)$和$ f(r)$和$ f(r,t)$修饰的重力中提供的可遍历莫里斯 - thorne的特性。我们还通过动作中新型的非最小相互作用项分析了GR中场强的耦合。在所有情况下,我们都使用合适的参数约束,评估虫洞的形状函数,数值分析喉咙附近的能量条件,使用广义的Tolman-Oppenheeimer-Volkov方程来检查稳定性,并通过估算体积积分量化器来证明最小外来物质的可能性。我们的结果表明,GR中存在稳定的虫洞解决方案,简单的$ F(R,T)$重力模型以及Power-Laws型$ f(r)$重力模型中的不稳定。

Among the several modified/extended gravity paradigms, the concept of antisymmetric connections leading to space-time torsion can be traced back to Cartan. More recently, developments in string theory have suggested the existence of a rank-2 self-interacting tensor field called the Kalb-Ramond field with similar outcomes, the field strength of which can support analytic wormhole-like solutions. However, detailed analyses of the physical properties of interest of such solutions are lacking. In this study, we comprehensively probe the properties of traversable Morris-Thorne like wormhole solutions sourced by the Kalb-Ramond field strength in both General Relativity (GR) and $f(R)$ and $f(R,T)$ modified gravity. We also analyze the coupling of the field strength in GR via a novel non-minimal interaction term in the action. Using suitable parametric constraints in all cases, we evaluate wormhole shape functions, numerically analyze the energy conditions near the throat, check the stability using the generalized Tolman-Oppenheimer-Volkov equation, and demonstrate the possibility of minimum exotic matter by estimating the volume integral quantifier. Our results show the existence of stable wormhole solutions in GR and a simple $f(R,T)$ gravity model, and unstable ones in a power-law type $f(R)$ gravity model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源