论文标题
由散装对应保护的无间隙
Gaplessness protected by bulk-edge correspondence
论文作者
论文摘要
经过将近半个世纪的Laughlin对整数和分数量子厅效应的波形的著名研究,仍然存在困难来证明给定的波函数是否可以描述间隙相位。在这项工作中,我们表明了由非单身形式的保形场理论(CFT)构建的FQH状态,例如Gaffiinian和Haldane-Rezayi态在圆柱几何形状中保存的散装对应关系下很难散布。与对凝结物质社区的共同理解相反,这些系统的无间隙似乎并不来自于至少在这种环境中直接直接直接直接的单身CFT的负相形尺寸。我们提出的困难来自单型电荷的不匹配和基础CFT的简单电荷,即Galois Shuffle。在Haldane-Rezayi状态下,这对应于Neveu-Schwartz和Ramond部门的共轭操作,用于单一的Weyl fermion和simbletectic fermion。在Gaffinian状态下,除了Galois shuffle结构外,$ z_ {2} $简单的当前结果在气缸分区功能中的异常形式的保形尺寸以外的局部量子场理论之外。这表明现有的无间隙分数量子霍尔状态具有相似的非本地结构,类似于缩小的量子关键。我们的工作打开了一个新的范式,该范式通过重新审视异常问题以及符号和迪拉克·费米昂的双重性来预测拓扑秩序状态的候选以及本地或非本地的候选者。
After almost half a century of Laughlin's celebrated study of the wavefunctions of integer and fractional quantum Hall effects, there have still existed difficulties to prove whether the given wavefunction can describe gapped phase or not in general. In this work, we show the FQH states constructed from nonunitary conformal field theories (CFTs), such as Gaffiinian and Haldane-Rezayi states have a difficulty gapping out under preserving bulk-edge correspondence in the cylinder geometry. Contrary to the common understandings of the condensed matter communities, the gaplessness for these systems seems not to come from the negative conformal dimensions of nonunitary CFTs in this setting at least directly. We propose the difficulty is coming from the mismatch of monodromy charge and simple charge of underlying CFTs, known as Galois shuffle. In the Haldane-Rezayi state, this corresponds to the conjugate operation of the Neveu-Schwartz and Ramond sectors for unitary Weyl fermion and symplectic fermion. In the Gaffinian state, besides Galois shuffle structure, the anomalous conformal dimension of the $Z_{2}$ simple current results in the cylinder partition functions outside of the existing local quantum field theory. This indicates the existing gapless fractional quantum Hall states have similar nonlocal structures, similar to deconfined quantum criticality. Our work opens up a new paradigm which gives a criterion to predict whether the candidate of topological ordered states are gapped or not, and local or nonlocal, by revisiting the problem of anomaly and the duality of symplectic and Dirac fermion.