论文标题

同质性调节图形卷积网络中的双重下降概括

Homophily modulates double descent generalization in graph convolution networks

论文作者

Shi, Cheng, Pan, Liming, Hu, Hong, Dokmanić, Ivan

论文摘要

图形神经网络(GNNS)在建模关系数据(例如生物,社会和运输网络)中表现出色,但其成功的基础尚不清楚。统计学习理论的传统复杂性测量无法解释观察到的现象,例如双重下降或关系语义对概括误差的影响。通过在关键网络和数据集中对``trandductive''双重下降的实验观察的动机,我们使用统计物理学和随机矩阵理论的分析工具来精确表征上下文随机块模型中简单的图形卷积网络中的概括。我们的结果阐明了在同粒细胞和异性数据上学习的细微差别,并预测了双重下降,其在GNN中的存在受到了最近的质疑。我们展示了如何通过图形噪声,特征噪声和训练标签数量之间的相互作用来塑造风险。我们的发现适用于程式化模型,从而捕获了现实世界中的GNN和数据集中的定性趋势。为了一个很好的例子,我们使用分析见解来提高异性数据集上最先进的图形卷积网络的性能。

Graph neural networks (GNNs) excel in modeling relational data such as biological, social, and transportation networks, but the underpinnings of their success are not well understood. Traditional complexity measures from statistical learning theory fail to account for observed phenomena like the double descent or the impact of relational semantics on generalization error. Motivated by experimental observations of ``transductive'' double descent in key networks and datasets, we use analytical tools from statistical physics and random matrix theory to precisely characterize generalization in simple graph convolution networks on the contextual stochastic block model. Our results illuminate the nuances of learning on homophilic versus heterophilic data and predict double descent whose existence in GNNs has been questioned by recent work. We show how risk is shaped by the interplay between the graph noise, feature noise, and the number of training labels. Our findings apply beyond stylized models, capturing qualitative trends in real-world GNNs and datasets. As a case in point, we use our analytic insights to improve performance of state-of-the-art graph convolution networks on heterophilic datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源