论文标题
统计minimax定理通过非标准分析
Statistical minimax theorems via nonstandard analysis
论文作者
论文摘要
对于有限参数空间的统计决策问题,众所周知,上值(最小值值)与较低的值(最大值值)一致。只要大自然才能发挥先验分布,并且统计学家可以发挥随机策略,只有在普遍的先验概念下,这种等效性才能将其延续到无限的参数空间。已经建立了这种经典结果的各种此类扩展,但是它们受到技术条件的影响,例如参数空间的紧凑性或风险功能的连续性。使用非标准分析,我们证明了一个最小化定理用于任意统计决策问题。非正式地,我们表明,对于每个统计决策问题,标准上值等于$ \ sup $在收集所有内部先验时的$ \ sup $时,这可能会将无限概率分配给(内部)事件。应用我们的非标准minimax定理,我们得出了几种标准的minimax定理:具有连续风险函数的紧凑参数空间的最小值定理,具有有限的额外添加性最小值定理具有有界风险函数,以及具有LipsChitz风险功能的完全有限的度量参数空间的最小值定理。
For statistical decision problems with finite parameter space, it is well-known that the upper value (minimax value) agrees with the lower value (maximin value). Only under a generalized notion of prior does such an equivalence carry over to the case infinite parameter spaces, provided nature can play a prior distribution and the statistician can play a randomized strategy. Various such extensions of this classical result have been established, but they are subject to technical conditions such as compactness of the parameter space or continuity of the risk functions. Using nonstandard analysis, we prove a minimax theorem for arbitrary statistical decision problems. Informally, we show that for every statistical decision problem, the standard upper value equals the lower value when the $\sup$ is taken over the collection of all internal priors, which may assign infinitesimal probability to (internal) events. Applying our nonstandard minimax theorem, we derive several standard minimax theorems: a minimax theorem on compact parameter space with continuous risk functions, a finitely additive minimax theorem with bounded risk functions and a minimax theorem on totally bounded metric parameter spaces with Lipschitz risk functions.