论文标题

矩阵产品重新归一化组:潜在的通用量子多体求解器

Matrix Product Renormalization Group: Potential Universal Quantum Many-Body Solver

论文作者

Yamada, Masahiko G., Sanno, Takumi, Takahashi, Masahiro O., Akagi, Yutaka, Suwa, Hidemaro, Fujimoto, Satoshi, Udagawa, Masafumi

论文摘要

密度矩阵重新归一化组(DMRG)是一种著名的张量网络算法,它非常有效地计算一维量子多体系统的基态。在这里,我们提出了改进的连续张量网络算法的配方,我们将其命名为基质产品重归其化组(MPRG)。 MPRG是一种通用的量子多体求解器,在两个和更高的维度下可能在零和有限温度下起作用,甚至适用于打开量子系统。此外,MPRG不依赖任何各种原则,因此在任何维度上支持任何非弱者系统。作为演示,我们将Yang-Lee边缘奇异性在一个维度中作为代表性的非热系统的临界特性。

The density matrix renormalization group (DMRG) is a celebrated tensor network algorithm, which computes the ground states of one-dimensional quantum many-body systems very efficiently. Here we propose an improved formulation of continuous tensor network algorithms, which we name a matrix product renormalization group (MPRG). MPRG is a universal quantum many-body solver, which potentially works at both zero and finite temperatures, in two and higher dimensions, and is even applicable to open quantum systems. Furthermore, MPRG does not rely on any variational principles and thus supports any kind of non-Hermitian systems in any dimension. As a demonstration, we present critical properties of the Yang-Lee edge singularity in one dimension as a representative non-Hermitian system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源