论文标题

通往路径和周期的全摩形态

Full-homomorphisms to paths and cycles

论文作者

Guzmán-Pro, Santiago

论文摘要

一对图之间的全合法形态是一个顶点映射,可保留邻接和非附属物。对于固定的图$ h $,全$ H $颜色是$ g $至$ h $的全部塑性。最小的$ h $ - obstruction是一张不承认完整$ h $颜色的图表,因此每一个适当的诱导子图$ g $都可以承认完整的$ h $颜色。费德(Feder)和地狱(Hell)证明,对于每张图$ h $,都有有限数量的最小$ h $ obstrountions。我们通过描述所有最小路径的障碍来开始这项工作。然后,我们研究了规则图的最小障碍物,以提出描述最小循环障碍物的描述。由于这些结果,我们观察到,对于每个路径$ p $和每个周期$ c $,最小值$ p $ -Obstructions的数量和$ c $ -Obstructions是$ \ Mathcal {o}(| V(p)|^2)$和$ \ \ \ \ \ \ \ \ \ \ \ \ {o}(o}(o}(c)| v(c)|^2)$。最后,我们提出了一些有关最小$ h $ obstructions和最小$ h $ obstructions的数量的问题。

A full-homomorphism between a pair of graphs is a vertex mapping that preserves adjacencies and non-adjacencies. For a fixed graph $H$, a full $H$-colouring is a full-homomorphism of $G$ to $H$. A minimal $H$-obstruction is a graph that does not admit a full $H$-colouring, such that every proper induced subgraph of $G$ admits a full $H$-colouring. Feder and Hell proved that for every graph $H$ there is a finite number of minimal $H$-obstructions. We begin this work by describing all minimal obstructions of paths. Then, we study minimal obstructions of regular graphs to propose a description of minimal obstructions of cycles. As a consequence of these results, we observe that for each path $P$ and each cycle $C$, the number of minimal $P$-obstructions and $C$-obstructions is $\mathcal{O}(|V(P)|^2)$ and $\mathcal{O}(|V(C)|^2)$, respectively. Finally, we propose some problems regarding the largest minimal $H$-obstructions, and the number of minimal $H$-obstructions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源