论文标题

社交网络的动态:多代理信息融合,预期决策和投票

Dynamics of Social Networks: Multi-agent Information Fusion, Anticipatory Decision Making and Polling

论文作者

Krishnamurthy, Vikram

论文摘要

本文通过社交网络中的社会学习来调查数学模型,结构结果和算法。 第1部分,即带有控制感应的贝叶斯社会学习解决以下问题:面对社会学习的风险如何影响最快的变化检测?信息融合如何定价?国家估计的收敛速率如何受社会学习影响?目的是在随机控制和贝叶斯估计中发展和扩展结构性结果,以回答这些问题。这种结构结果在最佳性能上产生了基本界限,可深入了解哪些参数会影响最佳策略,并产生计算有效算法。 第2部分,即,与行为经济学限制的多代理信息融合概括了第1部分。代理人在行为经济学意义上表现出复杂的决策。即代理人做出预期的决策(因此,决策策略是不一致的,并将其解释为贝叶斯纳什均衡。 第3部分,即大型网络中的{\ em交互式传感},解决了以下问题:如何跟踪具有动力学的无限随机图的程度分布(通过希尔伯特空间上的随机近似)?如何通过采样网络获得不完整的信息,如何通过贝叶斯过滤跟踪Markov调制功率法网络及其平均场动力学的感染度分布?我们还简要讨论了社交网络中的玻璃天花板效应是如何出现的。 第4部分,即\ emph {有效的网络投票}涉及大规模社交网络中的民意调查。在此类网络中,只能将一小部分节点进行轮询以确定其决策。应该对哪些节点进行轮询以实现统计准确的估计?

This paper surveys mathematical models, structural results and algorithms in controlled sensing with social learning in social networks. Part 1, namely Bayesian Social Learning with Controlled Sensing addresses the following questions: How does risk averse behavior in social learning affect quickest change detection? How can information fusion be priced? How is the convergence rate of state estimation affected by social learning? The aim is to develop and extend structural results in stochastic control and Bayesian estimation to answer these questions. Such structural results yield fundamental bounds on the optimal performance, give insight into what parameters affect the optimal policies, and yield computationally efficient algorithms. Part 2, namely, Multi-agent Information Fusion with Behavioral Economics Constraints generalizes Part 1. The agents exhibit sophisticated decision making in a behavioral economics sense; namely the agents make anticipatory decisions (thus the decision strategies are time inconsistent and interpreted as subgame Bayesian Nash equilibria). Part 3, namely {\em Interactive Sensing in Large Networks}, addresses the following questions: How to track the degree distribution of an infinite random graph with dynamics (via a stochastic approximation on a Hilbert space)? How can the infected degree distribution of a Markov modulated power law network and its mean field dynamics be tracked via Bayesian filtering given incomplete information obtained by sampling the network? We also briefly discuss how the glass ceiling effect emerges in social networks. Part 4, namely \emph{Efficient Network Polling} deals with polling in large scale social networks. In such networks, only a fraction of nodes can be polled to determine their decisions. Which nodes should be polled to achieve a statistically accurate estimates?

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源