论文标题
可追溯通过级联演员批评剂的可追溯自动特征转换
Traceable Automatic Feature Transformation via Cascading Actor-Critic Agents
论文作者
论文摘要
AI的功能转换是提高机器学习有效性和解释性(ML)的重要任务。功能转换旨在转换原始数据以确定最佳特征空间,从而增强下游ML模型的性能。现有研究要么结合预处理,特征选择和发电技能,以经验转换数据,要么通过机器智能(例如增强学习)自动化特征转换。但是,现有研究遭受:1)高维非歧义特征空间; 2)无法代表复杂的情境状态; 3)效率低下,整合本地和全球功能信息。为了填补研究差距,我们将功能转换任务制定为特征生成和选择的迭代嵌套过程,其中功能生成是基于原始功能生成和添加新功能的,并且功能选择是删除冗余功能以控制特征空间的大小。最后,我们提出了广泛的实验和案例研究,以说明与高维数据中的SOTA和鲁棒性相比,F1得分的24.7%改善。
Feature transformation for AI is an essential task to boost the effectiveness and interpretability of machine learning (ML). Feature transformation aims to transform original data to identify an optimal feature space that enhances the performances of a downstream ML model. Existing studies either combines preprocessing, feature selection, and generation skills to empirically transform data, or automate feature transformation by machine intelligence, such as reinforcement learning. However, existing studies suffer from: 1) high-dimensional non-discriminative feature space; 2) inability to represent complex situational states; 3) inefficiency in integrating local and global feature information. To fill the research gap, we formulate the feature transformation task as an iterative, nested process of feature generation and selection, where feature generation is to generate and add new features based on original features, and feature selection is to remove redundant features to control the size of feature space. Finally, we present extensive experiments and case studies to illustrate 24.7\% improvements in F1 scores compared with SOTAs and robustness in high-dimensional data.