论文标题
混合消息传递下行链路FDD大规模MIMO-OFDM频道估计的算法
Hybrid Message Passing Algorithm for Downlink FDD Massive MIMO-OFDM Channel Estimation
论文作者
论文摘要
因子图上的消息传递(MP)算法的设计是在无线通信系统中实现通道估计(CE)的有效方式,通过利用准确匹配通道特性的先前概率模型,可以进一步提高性能。在这项工作中,我们研究了下行链路大量多输入多输出(MIMO)正交频分多路复用(OFDM)系统中的CE问题。作为先前的概率,我们提出了具有较大差异(TSGM-LVD)模型的马尔可夫链两态高斯混合物,以利用通道角频率域中的结构化稀疏性。现有的单一和组合的MP规则无法处理提出的概率模型的消息计算。为了克服此问题,我们提出了一种传达混合消息传递(HMP)规则的通用方法,该方法允许计算由混合线性和非线性函数描述的消息。因此,我们在结构化涡轮框架(STF)下设计了HMP-TSGM-LVD算法。仿真结果表明,所提出的算法收敛速度比其对应物更快,更好,更稳定。特别是,提出的方法的增益是高信噪比的最大值(3 dB),而基准方法由于不正确的先前模型表征而导致的振荡行为经历了振荡行为。
The design of message passing (MP) algorithms on factor graphs is an effective manner to implement channel estimation (CE) in wireless communication systems, which performance can be further improved by exploiting prior probability models that accurately match the channel characteristics. In this work, we study the CE problem in a downlink massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. As the prior probability, we propose the Markov chain two-state Gaussian mixture with large variance differences (TSGM-LVD) model to exploit the structured sparsity in the angle-frequency domain of the channel. Existing single and combined MP rules cannot deal with the message computation of the proposed probability model. To overcome this issue, we present a general method to derive the hybrid message passing (HMP) rule, which allows the calculation of messages described by mixed linear and non-linear functions. Accordingly, we design the HMP-TSGM-LVD algorithm under the structured turbo framework (STF). Simulation results demonstrate that the proposed algorithm converges faster and obtains better and more stable performance than its counterparts. In particular, the gain of the proposed approach is maximum (3 dB) in the high signal-to-noise ratio regime, while benchmark approaches experience oscillating behavior due to the improper prior model characterization.