论文标题

AER:随时间序列异常检测回归的自动编码器

AER: Auto-Encoder with Regression for Time Series Anomaly Detection

论文作者

Wong, Lawrence, Liu, Dongyu, Berti-Equille, Laure, Alnegheimish, Sarah, Veeramachaneni, Kalyan

论文摘要

时间序列数据的异常检测越来越普遍在监视指标的各个工业领域,以防止潜在的事故和经济损失。但是,标有数据的稀缺性和对异常的模棱两可的定义会使这些努力变得复杂。最近无监督的机器学习方法在使用单键型预测或时间序列重建方面已经取得了显着的进步。尽管传统上是单独考虑的,但这些方法并非相互排斥,并且可以提供有关异常检测的互补观点。本文首先强调了具有可视化的时间序列信号和异常得分的基于预测和基于重新建筑的方法的成功和局限性。然后,我们提出了AER(具有回归的自动编码器),该联合模型结合了Vanilla自动编码器和LSTM回归器,以结合成功并解决每种方法的局限性。我们的模型可以产生双向预测,同时通过优化关节目标函数同时重建原始时间序列。此外,我们提出了通过一系列消融研究结合预测和重建错误的几种方法。最后,我们将AER体系结构的性能与来自NASA,Yahoo,Numenta和UCR的12个著名单变量时间序列数据集的两种基于预测的方法和三种基于重新构造的方法进行了比较。结果表明,AER在所有数据集中的平均F1得分最高(与Arima相比提高了23.5%),同时保留了类似于其香草自动编码器和回归器组件的运行时。我们的模型可在Orion中获得,这是时间序列异常检测的开源基准测试工具。

Anomaly detection on time series data is increasingly common across various industrial domains that monitor metrics in order to prevent potential accidents and economic losses. However, a scarcity of labeled data and ambiguous definitions of anomalies can complicate these efforts. Recent unsupervised machine learning methods have made remarkable progress in tackling this problem using either single-timestamp predictions or time series reconstructions. While traditionally considered separately, these methods are not mutually exclusive and can offer complementary perspectives on anomaly detection. This paper first highlights the successes and limitations of prediction-based and reconstruction-based methods with visualized time series signals and anomaly scores. We then propose AER (Auto-encoder with Regression), a joint model that combines a vanilla auto-encoder and an LSTM regressor to incorporate the successes and address the limitations of each method. Our model can produce bi-directional predictions while simultaneously reconstructing the original time series by optimizing a joint objective function. Furthermore, we propose several ways of combining the prediction and reconstruction errors through a series of ablation studies. Finally, we compare the performance of the AER architecture against two prediction-based methods and three reconstruction-based methods on 12 well-known univariate time series datasets from NASA, Yahoo, Numenta, and UCR. The results show that AER has the highest averaged F1 score across all datasets (a 23.5% improvement compared to ARIMA) while retaining a runtime similar to its vanilla auto-encoder and regressor components. Our model is available in Orion, an open-source benchmarking tool for time series anomaly detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源