论文标题

峰值活动凸起的随机控制:单调和共振现象

Stochastic control of spiking activity bump expansion: monotonic and resonant phenomena

论文作者

Semenov, Vladimir V., Zakharova, Anna

论文摘要

我们考虑在可旋转的尖峰振荡器中,在空间局部的尖峰活动模式,所谓的颠簸。双重性在于自我维持的尖峰动力学和静态稳态制度的共存。我们在数值上表明,可以通过改变乘法噪声的强度来控制这种模式的生长或收缩过程。特别是,噪声的效果是在耦合后的振荡器的合奏中单调的。另一方面,在V. Semenov等人提出的另一个模型中。在2016年(参见参考文献[V. Semenov等人,物理Rev. E 93,052210(2016)]),观察到共振噪声效应。在该模型中,在适当的噪声水平上实现了活动凸起膨胀的稳定,并且噪声效应会随着噪声强度的进一步增加而逆转。此外,我们展示了非局部耦合的建设性作用,该耦合允许在局部耦合的情况下,由于噪声的作用,可以保存域和前部被完全破坏。

We consider spatially localized spiking activity patterns, so-called bumps, in ensembles of bistable spiking oscillators. The bistability consists in the coexistence of self-sustained spiking dynamics and quiescent steady-state regime. We show numerically that the processes of growth or contraction of such patterns can be controlled by varying the intensity of multiplicative noise. In particular, the effect of the noise is monotonic in an ensemble of the coupled Hindmarsh-Rose oscillators. On the other hand, in another model proposed by V. Semenov et al. in 2016 (see Ref. [V. Semenov et al., Phys. Rev. E 93, 052210 (2016)]), a resonant noise effect is observed. In that model, stabilization of the activity bump expansion is achieved at an appropriate noise level, and the noise effect reverses with a further increase in noise intensity. Moreover, we show the constructive role of nonlocal coupling which allows to save domains and fronts being totally destroyed due to the action of noise in the case of local coupling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源