论文标题
圆形可访问深度:UGV导航的强大遍历性表示
Circular Accessible Depth: A Robust Traversability Representation for UGV Navigation
论文作者
论文摘要
在本文中,我们介绍了无循环深度(CAD),这是无人接地车辆(UGV)的强大遍历性表示,以在包含不规则障碍的各种情况下学习遍历性。为了预测CAD,我们提出了一个神经网络,即CADNET,具有基于注意力的多帧点云融合模块,稳定性注意模块(SAM),以从Lidar捕获的点云中编码空间特征。 CAD是基于极地坐标系设计的,并专注于预测可穿越区域的边界。由于它编码周围环境的空间信息,因此可以为卡德涅特提供半监督的学习,因此可以避免注释大量数据。广泛的实验表明,在鲁棒性和精度方面,CAD优于基准。我们还将我们的方法实现在真正的UGV上,并表明它在实际情况下表现良好。
In this paper, we present the Circular Accessible Depth (CAD), a robust traversability representation for an unmanned ground vehicle (UGV) to learn traversability in various scenarios containing irregular obstacles. To predict CAD, we propose a neural network, namely CADNet, with an attention-based multi-frame point cloud fusion module, Stability-Attention Module (SAM), to encode the spatial features from point clouds captured by LiDAR. CAD is designed based on the polar coordinate system and focuses on predicting the border of traversable area. Since it encodes the spatial information of the surrounding environment, which enables a semi-supervised learning for the CADNet, and thus desirably avoids annotating a large amount of data. Extensive experiments demonstrate that CAD outperforms baselines in terms of robustness and precision. We also implement our method on a real UGV and show that it performs well in real-world scenarios.