论文标题

用于细粒视觉识别的部分引导的关系变压器

Part-guided Relational Transformers for Fine-grained Visual Recognition

论文作者

Zhao, Yifan, Li, Jia, Chen, Xiaowu, Tian, Yonghong

论文摘要

细颗粒的视觉识别是将具有视觉上相似外观的对象分类为子类别,这在Deep CNN的开发中取得了长足的进步。但是,处理不同子类别之间的细微差异仍然是一个挑战。在本文中,我们建议从两个方面的一个统一框架中解决此问题,即构建特征级别的相互关系,并捕获部分级别的判别特征。该框架(即部分指导的关系变压器(部分))提议通过自动零件发现模块来学习判别零件特征,并通过从自然语言处理领域适应变压器模型来探索与特征变换模块的固有相关性。零件发现模块有效地发现了与梯度下降程序高度相对应的区分区域。然后,第二个特征转换模块在全局嵌入和多个部分嵌入中建立相关性,从而增强语义像素之间的空间相互作用。此外,我们提出的方法不依赖于推理时间中的其他部分分支,并在3个广泛使用的细粒对象识别基准上达到最先进的性能。实验结果和可解释的可视化证明了我们提出的方法的有效性。该代码可以在https://github.com/icvteam/part上找到。

Fine-grained visual recognition is to classify objects with visually similar appearances into subcategories, which has made great progress with the development of deep CNNs. However, handling subtle differences between different subcategories still remains a challenge. In this paper, we propose to solve this issue in one unified framework from two aspects, i.e., constructing feature-level interrelationships, and capturing part-level discriminative features. This framework, namely PArt-guided Relational Transformers (PART), is proposed to learn the discriminative part features with an automatic part discovery module, and to explore the intrinsic correlations with a feature transformation module by adapting the Transformer models from the field of natural language processing. The part discovery module efficiently discovers the discriminative regions which are highly-corresponded to the gradient descent procedure. Then the second feature transformation module builds correlations within the global embedding and multiple part embedding, enhancing spatial interactions among semantic pixels. Moreover, our proposed approach does not rely on additional part branches in the inference time and reaches state-of-the-art performance on 3 widely-used fine-grained object recognition benchmarks. Experimental results and explainable visualizations demonstrate the effectiveness of our proposed approach. The code can be found at https://github.com/iCVTEAM/PART.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源