论文标题

图的平均连接矩阵

The average connectivity matrix of a graph

论文作者

Nguyen, Linh, O, Suil

论文摘要

对于图$ g $,对于两个不同的顶点$ u $和$ v $,让$κ(u,v)$是加入$ u $和$ g $中的顶点 - 二十一个路径的最大数量。 $ n $ vertex连接的图形$ g $的平均连接矩阵,书面$ a _ {\barκ}(g)$,是$ n \ times n $矩阵,其$(u,v)$ - 条目为$κ(u,v)/{n \ select 2} $ and prect $ p(a _ barmbARDIUS) $ a _ {\barκ}(g)$。在本文中,我们研究了矩阵的一些光谱特性。特别是,我们证明,对于任何$ n $ vertex连接的图形$ g $,我们都有$ρ(a _ {\barκ}(g))\ le \ le \ frac {4α'(g)} n $,这意味着Kim和o \ cite and O \ cite {ko}的结果,表示任何连接的图形$ g,g,g,g,g,g,g,我们已经有2 $ g(g,g,g,g,g,g,g,g,g,g,g,g,g,g,g,g,g,g y(g)(g)其中$ \barκ(g)= \ sum_ {u,v \ in v(g)} \ frac {κ(u,v)} {n \ select 2} $和$α'(g)$是$ g $中匹配的最大尺寸;仅当$ g $是具有奇数顶点的完整图时,平等才能保持。另外,对于两部分图,我们改善了界限,即$ρ(a _ {\barκ}(g))\ le \ frac {(n-α'(g))(4α'(g) - 2)} {n(n(n(n(n(n(n(n(n(n(n(n)n(n(n)n(n(n(n(n(n(n n(n n(n n(n n(n n(n n(n N)上为之'))))))都因为))))都因为又又久(')')')))))都因为)))))))因为床))))))))))因为因为'))))))))))因为因为',')))))))

For a graph $G$ and for two distinct vertices $u$ and $v$, let $κ(u,v)$ be the maximum number of vertex-disjoint paths joining $u$ and $v$ in $G$. The average connectivity matrix of an $n$-vertex connected graph $G$, written $A_{\barκ}(G)$, is an $n\times n$ matrix whose $(u,v)$-entry is $κ(u,v)/{n \choose 2}$ and let $ρ(A_{\barκ}(G))$ be the spectral radius of $A_{\barκ}(G)$. In this paper, we investigate some spectral properties of the matrix. In particular, we prove that for any $n$-vertex connected graph $G$, we have $ρ(A_{\barκ}(G)) \le \frac{4α'(G)}n$, which implies a result of Kim and O \cite{KO} stating that for any connected graph $G$, we have $\barκ(G) \le 2 α'(G)$, where $\barκ(G)=\sum_{u,v \in V(G)}\frac{κ(u,v)}{n\choose 2}$ and $α'(G)$ is the maximum size of a matching in $G$; equality holds only when $G$ is a complete graph with an odd number of vertices. Also, for bipartite graphs, we improve the bound, namely $ρ(A_{\barκ}(G)) \le \frac{(n-α'(G))(4α'(G) - 2)}{n(n-1)}$, and equality in the bound holds only when $G$ is a complete balanced bipartite graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源