论文标题

带有条件发生器的多现实主义图像压缩

Multi-Realism Image Compression with a Conditional Generator

论文作者

Agustsson, Eirikur, Minnen, David, Toderici, George, Mentzer, Fabian

论文摘要

通过优化利率 - 统计 - 现实主义权衡,即使以低比特率,生成的压缩方法也会产生详细的,逼真的图像,而不是由速度延伸优化模型产生的模糊重建。但是,以前的方法无法明确控制综合的细节,这会导致对这些方法的普遍批评:用户可能会担心生成远离输入图像的误导性重建。在这项工作中,我们通过训练可以弥合两个政权并导致失真现实主义权衡的解码器来缓解这些担忧。从单个压缩表示,接收器可以决定重建接近输入的低平方误差重建,是具有高感知质量的现实重建,或者之间的任何内容。通过我们的方法,我们设定了一个新的扭曲现实主义的最新最新,推动了可实现的失真真实性对的边界,即,我们的方法在高现实主义和低失真时以比以往任何时候都更好地扭曲了。

By optimizing the rate-distortion-realism trade-off, generative compression approaches produce detailed, realistic images, even at low bit rates, instead of the blurry reconstructions produced by rate-distortion optimized models. However, previous methods do not explicitly control how much detail is synthesized, which results in a common criticism of these methods: users might be worried that a misleading reconstruction far from the input image is generated. In this work, we alleviate these concerns by training a decoder that can bridge the two regimes and navigate the distortion-realism trade-off. From a single compressed representation, the receiver can decide to either reconstruct a low mean squared error reconstruction that is close to the input, a realistic reconstruction with high perceptual quality, or anything in between. With our method, we set a new state-of-the-art in distortion-realism, pushing the frontier of achievable distortion-realism pairs, i.e., our method achieves better distortions at high realism and better realism at low distortion than ever before.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源