论文标题
几乎所有的非负整数及其小扰动都不是总和
Almost all sets of nonnegative integers and their small perturbations are not sumsets
论文作者
论文摘要
修复(0,1/3)$中的$α\。我们表明,从拓扑角度来看,几乎所有设置$ a \ subseteq \ mathbb {n} $具有除$ a^\ prime = a $ for yf $ o(n^α)$元素外的属性,则$ a^\ prime $不是一个非琐事$ b+c $。特别是,几乎所有$ a $都是完全不可约的。此外,我们证明该度量模拟具有$α= 1 $。
Fix $α\in (0,1/3)$. We show that, from a topological point of view, almost all sets $A\subseteq \mathbb{N}$ have the property that, if $A^\prime=A$ for all but $o(n^α)$ elements, then $A^\prime$ is not a nontrivial sumset $B+C$. In particular, almost all $A$ are totally irreducible. In addition, we prove that the measure analogue holds with $α=1$.