论文标题
美元
${\cal N}=1$ supersymmetry and Non-Riemannian Double Field Theory
论文作者
论文摘要
我们在统一的方法中构造了$ {\ cal n} = 1 $ supersymmetrictric的扩展和双场理论的超对称扩展。在双几何形状中包含费米子迫使我们使用通用的框架形式主义来构建这些几何形状的广义通量成分。我们专注于获得$ d = 10 $最小超级重力型号所需的最一般处方。我们研究了如何始终避免$ n = \ bar n $和$ 0 \ le n \ le 5 $的双Lorentz对称性的量规修复程序,这产生了一个巨大的结构(产生相同非瑞曼自由度的Vielbeins)。作为一个例子,我们说明了如何在I型牛顿 - 卡丹(TNC)理论($ n = \ bar n = 1 $)中包含费米子的自由度,该理论与Carrollian Geomerties和Strighy Newton Cartan有关二元旋转和/或NULL降低/Uplifts/null降低/Uplifts。
We construct the ${\cal N}=1$ supersymmetric extension of Double Field Theory for Riemannian and the non-Riemannian in a unified approach. The inclusion of fermions in the double geometry force us to use the generalized frame formalism to construct the generalized flux components for these geometries. We focus on the most general prescription required to get the $D=10$ minimal supergravity model. We study how to consistently avoid the gauge fixing procedure of the double Lorentz symmetry when $n=\bar n$ and $0\le n \le 5$, which gives rise to a bigravity structure (pair of vielbeins producing the same non-Riemannian degrees of freedom). As an example we show how to to include fermionic degrees of freedom in the type I torsional Newton-Cartan (TNC) theory ($n=\bar n=1$) which is related to Carrollian geometries and stringy Newton Cartan through duality rotations and/or null reductions/uplifts.