论文标题

部分可观测时空混沌系统的无模型预测

Quality at the Tail of Machine Learning Inference

论文作者

Yang, Zhengxin, Gao, Wanling, Luo, Chunjie, Wang, Lei, Tang, Fei, Wen, Xu, Zhan, Jianfeng

论文摘要

机器学习推断应受到严格的推理时间限制,同时确保推理质量高,尤其是在关键安全性(例如自主驾驶)和关键任务(例如,情感识别)上下文中。忽视这两种方面都会导致严重的后果,例如丧生和财产损失。许多研究缺乏对这些指标的全面考虑,导致不完整或误导性评估。这项研究揭示了违反直觉的启示:由于推理时间,深度学习推断质量质量表现出波动。为了描述这一现象,作者将新术语“尾巴质量”造成了更全面的评估,并克服了传统的度量限制。此外,该研究提出了一个初始评估框架,以分析影响质量波动的因素,从而促进推理质量潜在分布的预测。评估框架的有效性是通过对四个系统的三个不同任务进行的深度学习模型进行的实验验证的。

Machine learning inference should be subject to stringent inference time constraints while ensuring high inference quality, especially in safety-critical (e.g., autonomous driving) and mission-critical (e.g., emotion recognition) contexts. Neglecting either aspect can lead to severe consequences, such as loss of life and property damage. Many studies lack a comprehensive consideration of these metrics, leading to incomplete or misleading evaluations. The study unveils a counterintuitive revelation: deep learning inference quality exhibits fluctuations due to inference time. To depict this phenomenon, the authors coin a new term, "tail quality," providing a more comprehensive evaluation, and overcoming conventional metric limitations. Moreover, the research proposes an initial evaluation framework to analyze factors affecting quality fluctuations, facilitating the prediction of the potential distribution of inference quality. The effectiveness of the evaluation framework is validated through experiments conducted on deep learning models for three different tasks across four systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源