论文标题

部分可观测时空混沌系统的无模型预测

Conservative stabilized Runge-Kutta methods for the Vlasov-Fokker-Planck equation

论文作者

Almuslimani, Ibrahim, Crouseilles, Nicolas

论文摘要

在这项工作中,我们旨在构建数值方案,这些方案在成本和不变性的成本和保护方面都尽可能有效,对于vlasov--fokker- planck系统以及泊松或Ampère方程。使用分裂方法,如果空间中的线性项通过光谱或半拉格朗日方法处理,并且使用稳定的runge-kutta-kutta-chebyshev(rkc)集成符(一种强大的隐含方案替代方案)对碰撞操作员速度的非线性扩散进行处理。新方案被证明可以完全保留质量和动量。使用适当的电场近似获得总能量。在半混凝土情况下证明了H Theorem,而熵衰减的数值为完全离散的问题进行了说明。进行了数值实验,包括研究Landau阻尼现象和颠簸的不稳定性,以说明新方案的效率。

In this work, we aim at constructing numerical schemes, that are as efficient as possible in terms of cost and conservation of invariants, for the Vlasov--Fokker--Planck system coupled with Poisson or Ampère equation. Splitting methods are used where the linear terms in space are treated by spectral or semi-Lagrangian methods and the nonlinear diffusion in velocity in the collision operator is treated using a stabilized Runge--Kutta--Chebyshev (RKC) integrator, a powerful alternative of implicit schemes. The new schemes are shown to exactly preserve mass and momentum. The conservation of total energy is obtained using a suitable approximation of the electric field. An H-theorem is proved in the semi-discrete case, while the entropy decay is illustrated numerically for the fully discretized problem. Numerical experiments that include investigation of Landau damping phenomenon and bump-on-tail instability are performed to illustrate the efficiency of the new schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源