论文标题

advcat:针对网络安全性应用的域 - 不足的鲁棒性评估,具有分类输入

AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical Applications with Categorical Inputs

论文作者

Orsini, Helene, Bao, Hongyan, Zhou, Yujun, Xu, Xiangrui, Han, Yufei, Yi, Longyang, Wang, Wei, Gao, Xin, Zhang, Xiangliang

论文摘要

机器学习与服务系统(MLAAS)已广泛用于网络安全应用程序,例如检测网络入侵和虚假新闻活动。尽管有效,但它们对对抗性攻击的鲁棒性是MLAAS部署的主要信任之一。因此,我们有动力评估驻留在这些关键安全应用程序核心的机器学习模型的对抗性鲁棒性。以前关于访问模型鲁棒性的研究工作,以防止对分类输入操纵,这是特定于用例的,并且在很大程度上取决于域知识,或者需要对目标ML模型进行白色框访问。这种限制阻止了鲁棒性评估是为各种现实世界应用提供的域敏捷服务。我们提出了一个可证明的最佳且计算高效的对抗性鲁棒性评估方案,该协议为广泛的ML驱动网络安全性应用程序。我们证明了对伪造新闻检测和入侵检测问题的大量实验研究,证明了域 - 不稳定的鲁棒性评估方法。

Machine Learning-as-a-Service systems (MLaaS) have been largely developed for cybersecurity-critical applications, such as detecting network intrusions and fake news campaigns. Despite effectiveness, their robustness against adversarial attacks is one of the key trust concerns for MLaaS deployment. We are thus motivated to assess the adversarial robustness of the Machine Learning models residing at the core of these security-critical applications with categorical inputs. Previous research efforts on accessing model robustness against manipulation of categorical inputs are specific to use cases and heavily depend on domain knowledge, or require white-box access to the target ML model. Such limitations prevent the robustness assessment from being as a domain-agnostic service provided to various real-world applications. We propose a provably optimal yet computationally highly efficient adversarial robustness assessment protocol for a wide band of ML-driven cybersecurity-critical applications. We demonstrate the use of the domain-agnostic robustness assessment method with substantial experimental study on fake news detection and intrusion detection problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源