论文标题
Heartbeit:心电图数据的视觉变压器可改善低样本量的诊断性能
HeartBEiT: Vision Transformer for Electrocardiogram Data Improves Diagnostic Performance at Low Sample Sizes
论文作者
论文摘要
心电图(ECG)是一种普遍存在的诊断方式。用于ECG分析的卷积神经网络(CNN)需要大量样本量,并且在自然图像进行预训练时,转移学习方法会导致次优性能。我们利用掩盖的图像建模来创建第一个基于视觉的变压器模型HeartBeit进行心电图波形分析。我们对该模型进行了850万ECG的预先培训,然后使用不同的训练样本量和独立的验证数据集比较了肥厚型心肌病,低左心室射血分数和ST升高心肌梗塞的性能与标准CNN体系结构。我们表明,与其他模型相比,HeartBeit在较低的样本量下的性能明显更高。最后,我们还表明,通过突出指出了EKG与标准CNN的生物学相关区域,Heartbeit可以提高诊断的解释性。因此,我们提出了第一个基于视觉的波形变压器,该波形变压器可用于开发用于ECG分析的专业模型,尤其是在低样本量下。
The electrocardiogram (ECG) is a ubiquitous diagnostic modality. Convolutional neural networks (CNNs) applied towards ECG analysis require large sample sizes, and transfer learning approaches result in suboptimal performance when pre-training is done on natural images. We leveraged masked image modeling to create the first vision-based transformer model, HeartBEiT, for electrocardiogram waveform analysis. We pre-trained this model on 8.5 million ECGs and then compared performance vs. standard CNN architectures for diagnosis of hypertrophic cardiomyopathy, low left ventricular ejection fraction and ST elevation myocardial infarction using differing training sample sizes and independent validation datasets. We show that HeartBEiT has significantly higher performance at lower sample sizes compared to other models. Finally, we also show that HeartBEiT improves explainability of diagnosis by highlighting biologically relevant regions of the EKG vs. standard CNNs. Thus, we present the first vision-based waveform transformer that can be used to develop specialized models for ECG analysis especially at low sample sizes.