论文标题

SARS-COV-2病毒样颗粒,具有等离子Au核和S1尖峰蛋白冠

SARS-CoV-2 Virus-Like Particles with Plasmonic Au Cores and S1-Spike Protein Coronas

论文作者

Andrzejewska, Weronika, Peplińska, Barbara, Litowczenko, Jagoda, Obstarczyk, Patryk, Olesiak-Bańska, Joanna, Jurga, Stefan, Lewandowski, Mikołaj

论文摘要

COVID-19大流行激发了科学世界,以加强与病毒相关的研究,旨在开发快速安全的方法来检测人体中的病毒,研究病毒抗体和病毒细胞相互作用,并为靶向抗病毒疗法设计纳米载体。但是,对危险病毒的研究只能在遵循严格安全程序的认证实验室中进行。因此,开发停用的病毒构建体或类似于使用的病毒样物体,这些对象模仿了实际病毒并允许在任何研究实验室中进行与病毒相关的研究,这构成了重要的科学挑战。这种物种的一组是所谓的类似病毒样颗粒(VLP)。 VLP不是具有病毒DNA/RNA的衣壳,而是具有附着在其上的真实病毒蛋白的合成核。我们已经开发了一种制备VLP的方法,该VLP模仿了导致Covid-19疾病的病毒:SARS-COV-2。这些颗粒的核心核心被病毒尖峰蛋白的S1结构域的“ Coronas”包围。重要的是,它们可以安全使用,并专门与SARS-COV-2抗体相互作用。此外,AU核表现出局部的表面等离子体共振(LSPR),这使得合成的VLP适用于生物传感应用。在我们的研究中,这种影响使我们能够可视化VLP和抗体之间的相互作用,并确定特征性振动信号。此外,具有荧光标签的颗粒的额外功能化揭示了它们在研究特定病毒相关相互作用方面的潜力。值得注意的是,开发的合成方法的普遍特征使其有可能适用于模仿其他威胁生命的病毒的VLP。

The COVID-19 pandemic has stimulated the scientific world to intensify virus-related studies, aimed at the development of quick and safe ways of detecting viruses in human body, studying the virus-antibody and virus-cell interactions, and designing nanocarriers for targeted antiviral therapies. However, research on dangerous viruses can only be performed in certified laboratories that follow strict safety procedures. Thus, developing deactivated virus constructs or safe-to-use virus-like objects, which imitate real viruses and allow performing virus-related studies in any research laboratory, constitutes an important scientific challenge. One of the groups of such species are the so-called virus-like particles (VLPs). Instead of capsids with viral DNA/RNA, VLPs have synthetic cores with real virus proteins attached to them. We have developed a method for the preparation of VLPs imitating the virus responsible for the COVID-19 disease: the SARS-CoV-2. The particles have Au cores surrounded by "coronas" of S1 domains of the virus's Spike protein. Importantly, they are safe to use and specifically interact with SARS-CoV-2 antibodies. Moreover, Au cores exhibit localized surface plasmon resonance (LSPR), which makes the synthesized VLPs suitable for biosensing applications. Within our studies, the effect allowed us to visualize the interaction between the VLPs and the antibodies and identify the characteristic vibrational signals. What is more, additional functionalization of the particles with a fluorescent label revealed their potential in studying specific virus-related interactions. Notably, the universal character of the developed synthesis method makes it potentially applicable for fabricating VLPs imitating other life-threatening viruses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源