论文标题

视频语义细分的班级非偏好区域广义框架

A Class-wise Non-salient Region Generalized Framework for Video Semantic Segmentation

论文作者

Zhang, Yuhang, Tian, Shishun, Liao, Muxin, Zhang, Zhengyu, Zou, Wenbin, Xu, Chen

论文摘要

视频语义细分(VSS)对于由于现实世界环境的连续属性而处理动态场景是有益的。一方面,某些方法减轻了连续帧之间预测的不一致问题。另一方面,其他方法采用先前的框架作为先验信息来帮助分割当前帧。尽管先前的方法在独立和相同分布的(i.i.d)数据上实现了出色的性能,但它们不能很好地概括在其他看不见的域上。因此,我们探索了一个新任务,即视频概括的语义细分(VGSS)任务,该任务既考虑连续帧和域的概括。在本文中,我们为VGSS任务提出了一个范围的非征服区域广义(CNSG)框架。具体而言,我们首先定义了范围的非偏心功能,该功能描述了携带更多可概括信息的类非偏心区域的特征。然后,我们提出了一个范围的非征收特征推理策略,以适应和增强最广泛的通道。最后,我们提出了框架间的非偏心质心对准损失,以减轻VGSS任务中预测的不一致问题。我们还将基于视频的框架扩展到基于图像的可推广语义细分(IGSS)任务。实验表明,我们的CNSG框架在VGSS和IGSS任务方面产生了显着改善。

Video semantic segmentation (VSS) is beneficial for dealing with dynamic scenes due to the continuous property of the real-world environment. On the one hand, some methods alleviate the predicted inconsistent problem between continuous frames. On the other hand, other methods employ the previous frame as the prior information to assist in segmenting the current frame. Although the previous methods achieve superior performances on the independent and identically distributed (i.i.d) data, they can not generalize well on other unseen domains. Thus, we explore a new task, the video generalizable semantic segmentation (VGSS) task that considers both continuous frames and domain generalization. In this paper, we propose a class-wise non-salient region generalized (CNSG) framework for the VGSS task. Concretely, we first define the class-wise non-salient feature, which describes features of the class-wise non-salient region that carry more generalizable information. Then, we propose a class-wise non-salient feature reasoning strategy to select and enhance the most generalized channels adaptively. Finally, we propose an inter-frame non-salient centroid alignment loss to alleviate the predicted inconsistent problem in the VGSS task. We also extend our video-based framework to the image-based generalizable semantic segmentation (IGSS) task. Experiments demonstrate that our CNSG framework yields significant improvement in the VGSS and IGSS tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源