论文标题

矫正器:牙齿正畸可视化的高精度图像生成

OrthoGAN:High-Precision Image Generation for Teeth Orthodontic Visualization

论文作者

Shen, Feihong, Liu, JIngjing, Lou, Jianwen, Li, Haizhen, Fang, Bing, Ma, Chenglong, Hao, Jin, Feng, Yang, Zheng, Youyi

论文摘要

患者照顾正畸后的牙齿会是什么样。正畸医生通常会根据原始的微笑图像来描述期望运动,这令人信服。深度学习生成模型的增长改变了这种情况。它可以可视化正畸治疗的结果,并帮助患者预见其未来的牙齿和面部外观。虽然先前的研究主要集中在剖面上的2D或3D虚拟治疗结果(VTO),但在额叶面部图像上模拟治疗结果的问题却很差。在本文中,我们构建了一个高效,准确的系统,用于模拟额叶面部图像中的虚拟牙齿对齐效果。我们的系统采用可见牙齿可见的患者的正面图像,并以患者的3D扫描牙齿模型作为输入,并逐渐产生患者牙齿的视觉结果,因为医生的特定正畸计划步骤(即,单个牙齿的翻译和旋转的规范))。我们设计了一个基于多模式编码器的生成模型,以合成具有对齐牙齿的额叶额面图像。此外,原始图像颜色信息用于优化正畸结果,使结果更加自然。我们进行了广泛的定性和临床实验,也进行了一项试点研究,以验证我们的方法。

Patients take care of what their teeth will be like after the orthodontics. Orthodontists usually describe the expectation movement based on the original smile images, which is unconvincing. The growth of deep-learning generative models change this situation. It can visualize the outcome of orthodontic treatment and help patients foresee their future teeth and facial appearance. While previous studies mainly focus on 2D or 3D virtual treatment outcome (VTO) at a profile level, the problem of simulating treatment outcome at a frontal facial image is poorly explored. In this paper, we build an efficient and accurate system for simulating virtual teeth alignment effects in a frontal facial image. Our system takes a frontal face image of a patient with visible malpositioned teeth and the patient's 3D scanned teeth model as input, and progressively generates the visual results of the patient's teeth given the specific orthodontics planning steps from the doctor (i.e., the specification of translations and rotations of individual tooth). We design a multi-modal encoder-decoder based generative model to synthesize identity-preserving frontal facial images with aligned teeth. In addition, the original image color information is used to optimize the orthodontic outcomes, making the results more natural. We conduct extensive qualitative and clinical experiments and also a pilot study to validate our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源