论文标题
短距离分子动力学模拟中的离散梯度
Discrete gradients in short-range molecular dynamics simulations
论文作者
论文摘要
离散梯度(DG)或更准确的离散梯度方法是定制的时间集成方案,可保留给定的普通微分方程(ODE)的第一积分或Lyapunov函数。在保守的分子动力学(MD)模拟中,系统的能量是恒定的,因此是运动的第一个积分。因此,在保守分子动力学模拟中,离散的梯度方法似乎是一种自然的选择。
Discrete gradients (DG) or more exactly discrete gradient methods are time integration schemes that are custom-built to preserve first integrals or Lyapunov functions of a given ordinary differential equation (ODE). In conservative molecular dynamics (MD) simulations, the energy of the system is constant and therefore a first integral of motion. Hence, discrete gradient methods seem to be a natural choice as an integration scheme in conservative molecular dynamics simulations.