论文标题
AI模型的理论框架与生物医学中的应用解释性
A Theoretical Framework for AI Models Explainability with Application in Biomedicine
论文作者
论文摘要
可解释的人工智能(XAI)是人工智能界的一个充满活力的研究主题,在方法和领域之间的兴趣越来越大。关于这个主题的文章已经写了很多,但是Xai仍然缺乏共同的术语和一个能够为解释提供结构性健全性的框架。在我们的工作中,我们通过提出一个新的解释定义来解决这些问题,这是对文献中可以找到的内容的综合。我们认识到,解释不是原子质,而是来自模型及其投入输出映射的证据的结合,以及人类对这一证据的解释。此外,我们对忠实的特性进行解释(即,解释是对模型内部运作和决策过程的真实描述)和合理性(即,对用户的解释看起来有多少说明)。使用我们提出的理论框架简化了这些属性的运作方式,并为我们作为案例研究分析的常见解释方法提供了新的见解。
EXplainable Artificial Intelligence (XAI) is a vibrant research topic in the artificial intelligence community, with growing interest across methods and domains. Much has been written about the subject, yet XAI still lacks shared terminology and a framework capable of providing structural soundness to explanations. In our work, we address these issues by proposing a novel definition of explanation that is a synthesis of what can be found in the literature. We recognize that explanations are not atomic but the combination of evidence stemming from the model and its input-output mapping, and the human interpretation of this evidence. Furthermore, we fit explanations into the properties of faithfulness (i.e., the explanation being a true description of the model's inner workings and decision-making process) and plausibility (i.e., how much the explanation looks convincing to the user). Using our proposed theoretical framework simplifies how these properties are operationalized and it provides new insight into common explanation methods that we analyze as case studies.