论文标题
合作定位的积极计划:Fisher信息方法
Active Planning for Cooperative Localization: A Fisher Information Approach
论文作者
论文摘要
位置感知网络将引入新的服务和应用程序,以实现现代便利,监视和公共安全。在本文中,我们考虑了可以控制某些锚节点的位置的无线网络中合作定位的问题。我们引入了一种积极的计划方法,旨在移动锚点,以使未来测量的信息获得最大化。在提出方法的控制层中,通过最大程度地降低近似贝叶斯渔民信息矩阵(FIMS)的距离来计算控制输入。估计层计算代理状态的估计值,并为控制层提供了代理位置边缘后期的高斯表示,以进行近似贝叶斯FIM计算。基于成本函数,该成本函数在离散的未来时间段的滑动窗口上积累了贝叶斯FIM贡献,进行了退缩的视野(RH)控制。还讨论了有效解决所得树搜索问题成为可能的近似值。一项数值案例研究表明,在3-D方案中,单个受控锚点的智能行为以及由此产生的显着提高了定位精度。
Location-aware networks will introduce new services and applications for modern convenience, surveillance, and public safety. In this paper, we consider the problem of cooperative localization in a wireless network where the position of certain anchor nodes can be controlled. We introduce an active planning method that aims at moving the anchors such that the information gain of future measurements is maximized. In the control layer of the proposed method, control inputs are calculated by minimizing the traces of approximate inverse Bayesian Fisher information matrixes (FIMs). The estimation layer computes estimates of the agent states and provides Gaussian representations of marginal posteriors of agent positions to the control layer for approximate Bayesian FIM computations. Based on a cost function that accumulates Bayesian FIM contributions over a sliding window of discrete future timesteps, a receding horizon (RH) control is performed. Approximations that make it possible to solve the resulting tree-search problem efficiently are also discussed. A numerical case study demonstrates the intelligent behavior of a single controlled anchor in a 3-D scenario and the resulting significantly improved localization accuracy.