论文标题
X-MAS:在真实环境中用于户外监视的极度大规模多模式传感器数据集
X-MAS: Extremely Large-Scale Multi-Modal Sensor Dataset for Outdoor Surveillance in Real Environments
论文作者
论文摘要
在机器人和计算机视觉群落中,广泛的研究广泛进行了有关监视任务的研究,包括使用相机的人类检测,跟踪和运动识别。此外,与其他计算机视觉任务一样,深度学习算法在上述任务中被广泛使用。现有的公共数据集不足以开发基于学习的方法,这些方法处理各种监视,以应对户外和极端情况,例如恶劣的天气和低照明条件。因此,我们引入了一个新的大规模室外监视数据集,该数据集名为“极尺度的多模式传感器数据集(X-MAS),其中包含超过500,000张图像对以及由训练有素的注释者注释的第一人称视图数据。此外,单对包含多模式数据(例如,IR图像,RGB图像,热图像,深度图像和LIDAR扫描)。这是我们最好的知识上的第一个大规模的第一人称视图户外多模式数据集,该数据集关注监视任务。我们介绍了提出的数据集的概述,并使用统计数据和目前使用基于深度学习的算法利用数据集的方法。有关数据集和我们的研究的最新信息可在https://github.com/lge-robot-navi上获得,并且该数据集将可通过服务器下载。
In robotics and computer vision communities, extensive studies have been widely conducted regarding surveillance tasks, including human detection, tracking, and motion recognition with a camera. Additionally, deep learning algorithms are widely utilized in the aforementioned tasks as in other computer vision tasks. Existing public datasets are insufficient to develop learning-based methods that handle various surveillance for outdoor and extreme situations such as harsh weather and low illuminance conditions. Therefore, we introduce a new large-scale outdoor surveillance dataset named eXtremely large-scale Multi-modAl Sensor dataset (X-MAS) containing more than 500,000 image pairs and the first-person view data annotated by well-trained annotators. Moreover, a single pair contains multi-modal data (e.g. an IR image, an RGB image, a thermal image, a depth image, and a LiDAR scan). This is the first large-scale first-person view outdoor multi-modal dataset focusing on surveillance tasks to the best of our knowledge. We present an overview of the proposed dataset with statistics and present methods of exploiting our dataset with deep learning-based algorithms. The latest information on the dataset and our study are available at https://github.com/lge-robot-navi, and the dataset will be available for download through a server.