论文标题

多模式伪造线索的分层伪造分类器

Hierarchical Forgery Classifier On Multi-modality Face Forgery Clues

论文作者

Liu, Decheng, Zheng, Zeyang, Peng, Chunlei, Wang, Yukai, Wang, Nannan, Gao, Xinbo

论文摘要

面对伪造发现在个人隐私和社会保障中起着重要作用。随着对抗生成模型的发展,高质量的伪造图像变得越来越与人类与人类之间的区别。现有方法始终将伪造的检测任务视为常见的二元或多标签分类,而忽略探索多种多模式伪造的图像类型,例如可见的光谱和近红外场景。在本文中,我们提出了一种新型的层次结构伪造分类器,用于多模式伪造检测(HFC-MFFD),该分类器可以有效地学习基于强大的贴片的混合域表示,以增强多种模式场景中的伪造身份验证。局部空间混合结构域特征模块旨在探索局部不同面部区域中图像和频域中强大的歧视性伪造线索。此外,提出了特定的分层伪造分类器,以减轻类不平衡问题并进一步提高检测性能。代表性的多模式面孔数据集的实验结果表明,与最先进的算法相比,所提出的HFC-MFFD的表现出色。源代码和模型可在https://github.com/edwhites/hfc-mffd上公开获取。

Face forgery detection plays an important role in personal privacy and social security. With the development of adversarial generative models, high-quality forgery images become more and more indistinguishable from real to humans. Existing methods always regard as forgery detection task as the common binary or multi-label classification, and ignore exploring diverse multi-modality forgery image types, e.g. visible light spectrum and near-infrared scenarios. In this paper, we propose a novel Hierarchical Forgery Classifier for Multi-modality Face Forgery Detection (HFC-MFFD), which could effectively learn robust patches-based hybrid domain representation to enhance forgery authentication in multiple-modality scenarios. The local spatial hybrid domain feature module is designed to explore strong discriminative forgery clues both in the image and frequency domain in local distinct face regions. Furthermore, the specific hierarchical face forgery classifier is proposed to alleviate the class imbalance problem and further boost detection performance. Experimental results on representative multi-modality face forgery datasets demonstrate the superior performance of the proposed HFC-MFFD compared with state-of-the-art algorithms. The source code and models are publicly available at https://github.com/EdWhites/HFC-MFFD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源