论文标题
非高斯纠缠与当地高斯噪音的卓越弹性
Superior resilience of non-Gaussian entanglement against local Gaussian noises
论文作者
论文摘要
纠缠分配任务遇到了一个问题,即应如何准备最初的纠缠状态,以便在遭受本地噪声时保持最长的可能时间。在连续变化状态和当地高斯渠道的领域中,很容易假设具有最强大纠缠的最佳初始状态也是高斯。但是,事实并非如此。在这里,我们证明,在确定性的本地衰减或放大的效果下,特定的非高斯两种模式状态仍然纠缠在一起(具有衰减因子/功率增益的高斯通道$κ_I$和噪声参数$μ_i$ $ i = 1,2 $时\ frac {1} {4}(κ__1 +κ_2)(1 +κ_1κ_2)$,与高斯纠缠能够耐受噪声相比,这是一个严格的参数区域。这些结果改变了量子信息科学中的``高斯世界''范式(其中应在高斯州进行涉及高斯渠道的优化问题的解决方案)。
Entanglement distribution task encounters a problem of how the initial entangled state should be prepared in order to remain entangled the longest possible time when subjected to local noises. In the realm of continuous-variable states and local Gaussian channels it is tempting to assume that the optimal initial state with the most robust entanglement is Gaussian too; however, this is not the case. Here we prove that specific non-Gaussian two-mode states remain entangled under the effect of deterministic local attenuation or amplification (Gaussian channels with the attenuation factor/power gain $κ_i$ and the noise parameter $μ_i$ for modes $i=1,2$) whenever $κ_1 μ_2^2 + κ_2 μ_1^2 < \frac{1}{4}(κ_1 + κ_2) (1 + κ_1 κ_2)$, which is a strictly larger area of parameters as compared to where Gaussian entanglement is able to tolerate noise. These results shift the ``Gaussian world'' paradigm in quantum information science (within which solutions to optimization problems involving Gaussian channels are supposed to be attained at Gaussian states).