论文标题
在Moran过程中,平均固定时间的渐近行为具有频率无关的健身
Asymptotic behavior of mean fixation times in the Moran process with frequency-independent fitnesses
论文作者
论文摘要
当人口大小n倾向于无限量的无限时间(条件和无条件)中的人群中,由两种类型的个体A和B的人群(由MORAN工艺)控制时,我们会在极限中得出渐近公式。我们仅考虑两种类型的适应性不取决于人口频率的情况。我们的结果从最初条件是任何类型的单个个体的重要情况开始,但是我们还考虑了一个个体的分数x,0 <x <1的初始条件,其中x保持固定,总人口大小趋于无穷大。在被Antal和Scheuring覆盖的情况下(Bull Math Biol 68(8):1923-1944,2006),即任何类型的单个个体的条件固定时间,结果证明我们的公式比他们发现的公式要准确得多。如引用,我们的结果包括其他情况未经治疗的情况。
We derive asymptotic formulae in the limit when population size N tends to infinity for mean fixation times (conditional and unconditional) in a population with two types of individuals, A and B, governed by the Moran process. We consider only the case in which the fitness of the two types do not depend on the population frequencies. Our results start with the important cases in which the initial condition is a single individual of any type, but we also consider the initial condition of a fraction x, 0<x<1, of A individuals, where x is kept fixed and the total population size tends to infinity. In the cases covered by Antal and Scheuring (Bull Math Biol 68(8):1923-1944, 2006), i.e. conditional fixation times for a single individual of any type, it will turn out that our formulae are much more accurate than the ones they found. As quoted, our results include other situations not treated by them.