论文标题
伊斯基的半距离
Iséki spaces of semirings
论文作者
论文摘要
本文的目的是研究具有拓扑结构的半段的杰出理想类别的ISEKI空间。我们表明,每当半序是Noetherian时,每个Iséki空间都是准压缩。我们表征了Iséki空间,每个非空的封闭子集都有一个独特的通用点。此外,我们为Iséki空间的连接性提供了足够的条件,并表明Iséki空间的紧密联系意味着存在非主动的半元素元素。
The aim of this paper is to study Iseki spaces of distinguished classes of ideals of a semiring endowed with a topology. We show that every Iséki space is quasi-compact whenever the semiring is Noetherian. We characterize Iséki spaces for which every non-empty irreducible closed subset has a unique generic point. Furthermore, we provide a sufficient condition for the connectedness of Iséki spaces and show that the strongly connectedness of an Iséki space implies the existence of non-trivial idempotent elements of semirings.