论文标题
使用基于GRU的稀疏连接的RNN的疼痛水平和与疼痛相关的行为分类
Pain level and pain-related behaviour classification using GRU-based sparsely-connected RNNs
论文作者
论文摘要
关于将深度学习应用于生物识别分析的研究越来越多。但是,某些情况可能会损害提出的生物识别数据分析方法的客观度量和准确性。例如,患有慢性疼痛(CP)的人不知不觉地适应特定的身体运动,以保护自己免受伤害或额外的疼痛。由于没有专门的基准数据库来分析这种相关性,因此我们认为在这项研究的日常活动中可能影响人的生物识别技术的特定情况之一,并将eMopain数据库中的疼痛水平和与疼痛相关的行为分类。为了实现这一目标,我们提出了一个与封闭式复发单元(GRU)的稀疏连接的复发性神经网络(S-RNN)集合,该单元(GRU)使用共享的培训框架结合了多个自动编码器。该体系结构是由从惯性测量单元(IMU)和表面肌电图(SEMG)传感器收集的多维数据供应。此外,为了补偿在S-RNN的潜在空间中可能无法完美表示的时间维度的变化,我们融合了来自信息理论方法的手工制作的特征,该特征在共享隐藏状态中具有代表的特征。我们进行了几项实验,这些实验表明所提出的方法在对疼痛水平和与疼痛相关的行为进行分类方面的最新方法优于最先进的方法。
There is a growing body of studies on applying deep learning to biometrics analysis. Certain circumstances, however, could impair the objective measures and accuracy of the proposed biometric data analysis methods. For instance, people with chronic pain (CP) unconsciously adapt specific body movements to protect themselves from injury or additional pain. Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities in this study and classified pain level and pain-related behaviour in the EmoPain database. To achieve this, we proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders using a shared training framework. This architecture is fed by multidimensional data collected from inertial measurement unit (IMU) and surface electromyography (sEMG) sensors. Furthermore, to compensate for variations in the temporal dimension that may not be perfectly represented in the latent space of s-RNNs, we fused hand-crafted features derived from information-theoretic approaches with represented features in the shared hidden state. We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.