论文标题

涉及三角功能的组合总和的身份

Identities for combinatorial sums involving trigonometric functions

论文作者

Alzer, Horst, Yakubovich, Semyon

论文摘要

令$$ a_ {m,n}(a)= \ sum_ {j = 0}^m(-4)^j {m+j \ select 2J} \ sum_ {k = 0}^{n-1}^{n-1} \ sin(a+2kπ/n) b_ {m,n}(a)= \ sum_ {j = 0}^m(-4)^j {m+j+1 \选择2J+1} \ sum_ {k = 0}^{n-1} \ sin(a+2kπ/n) 1 $是整数,$ a $是一个真实数字。我们为以下结果提供了两个证据: (i)如果$ 2M+1 \ equiv 0 \,(\ mbox {mod} \,n)$,则$$ a_ a_ {m,n}(a)=(a)=( - 1)^m n \ sin((2m+1)a)。 $ 4(ii)如果$ 2M+1 \ not \ equiv 0 \,(\ mbox {mod} \,n)$,则$ a_ {m,n}(a)= 0 $。 (iii)如果$ 2(m+1)\ equiv 0 \,(\ mbox {mod} \,n)$,则$$ b_ {m,n}(a)=(a)=( - 1)^m \ frac {n} {n} {2} {2} \ sin(2(m+1)a)。 $$(iv)如果$ 2(m+1)\ not \ equiv 0 \,(\ mbox {mod} \,n)$,则$ b_ {m,n}(a)= 0 $。

Let $$ A_{m,n}(a)=\sum_{j=0}^m (-4)^j {m+j\choose 2j}\sum_{k=0}^{n-1} \sin(a+2kπ/n) \cos^{2j}(a+2kπ/n) $$ and $$ B_{m,n}(a)=\sum_{j=0}^m (-4)^j {m+j+1\choose 2j+1}\sum_{k=0}^{n-1} \sin(a+2kπ/n) \cos^{2j+1}(a+2kπ/n), $$ where $m\geq 0$ and $n\geq 1$ are integers and $a$ is a real number. We present two proofs for the following results: (i) If $2m+1 \equiv 0 \, (\mbox{mod} \, n)$, then $$ A_{m,n}(a)=(-1)^m n \sin((2m+1)a). $$ (ii) If $2m+1 \not\equiv 0 \, (\mbox{mod} \, n)$, then $A_{m,n}(a)=0$. (iii) If $2(m+1) \equiv 0 \, (\mbox{mod} \, n)$, then $$ B_{m,n}(a)=(-1)^m \frac{n}{2} \sin(2(m+1)a). $$ (iv) If $2(m+1) \not\equiv 0 \, (\mbox{mod} \, n)$, then $B_{m,n}(a)=0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源