论文标题

部分可观测时空混沌系统的无模型预测

The Ramsey numbers of squares of paths and cycles

论文作者

Allen, Peter, Cecchelli, Domenico Mergoni, Roberts, Barnaby, Skokan, Jozef

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The square $G^2$ of a graph $G$ is the graph on $V(G)$ with a pair of vertices $uv$ an edge whenever $u$ and $v$ have distance $1$ or $2$ in $G$. Given graphs $G$ and $H$, the Ramsey number $R(G,H)$ is the minimum $N$ such that whenever the edges of the complete graph $K_N$ are coloured with red and blue, there exists either a red copy of $G$ or a blue copy of $H$. We prove that for all sufficiently large $n$ we have \[R(P_{3n}^2,P_{3n}^2)=R(P_{3n+1}^2,P_{3n+1}^2)=R(C_{3n}^2,C_{3n}^2)=9n-3\mbox{ and } R(P_{3n+2}^2,P_{3n+2}^2)=9n+1.\] We also show that for any $γ>0$ and $Δ$ there exists $β>0$ such that the following holds. If $G$ can be coloured with three colours such that all colour classes have size at most $n$, the maximum degree $Δ(G)$ of $G$ is at most $Δ$, and $G$ has bandwidth at most $βn$, then $R(G,G)\le (3+γ)n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源