论文标题
多项式保护法的计算方法
A Computational Approach to Polynomial Conservation Laws
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
For polynomial ODE models, we introduce and discuss the concepts of exact and approximate conservation laws, which are the first integrals of the full and truncated sets of ODEs. For fast-slow systems, truncated ODEs describe the fast dynamics. We define compatibility classes as subsets of the state space, obtained by equating the conservation laws to constants. A set of conservation laws is complete when the corresponding compatibility classes contain a finite number of steady states. Complete sets of conservation laws can be used for model order reduction and for studying the multistationarity of the model. We provide algorithmic methods for computing linear, monomial, and polynomial conservation laws of polynomial ODE models and for testing their completeness. The resulting conservation laws and their completeness are either independent or dependent on the parameters. In the latter case, we provide parametric case distinctions. In particular, we propose a new method to compute polynomial conservation laws by comprehensive Gröbner systems and syzygies. Keywords: First integrals, chemical reaction networks, polynomial conservation laws, syzygies, comprehensive Gröbner systems.